Abstract

AbstractColorless crystals of the new hydroxometalates Ba[RE(OH)5] with the rare‐earth elements RE=Tb, Dy, Ho were synthesized under ultra‐alkaline conditions in a KOH hydroflux at 200 °C. Single‐crystal X‐ray diffraction revealed that the three compounds crystallize isostructural in the monoclinic space group P21/n (no. 14). In the crystal structure, the rare‐earth cations are coordinated by the oxygen atoms of seven hydroxide anions, which define a distorted pentagonal bipyramid. These polyhedra share edges of their basal ring forming infinite chains that run parallel to the [010] direction. Hydrogen bonds connect the chains into layers parallel to the (101) plane. The Ba2+ cations are located between these layers and surrounded by nine oxygen atoms. Ba[Dy(OH)5] is paramagnetic and shows no luminescence under UV light. When heated in synthetic air or argon, water is released in well‐defined steps. Ba[Dy(OH)5] decomposes via DyOOH to Dy2O3, which then reacts with the remaining Ba(OH)2 to form BaDy2O4. Thus, the hydroxometalates can be used as carbon‐free precursors for oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.