Abstract
Abstract The Xijiang River is the main channel of the Zhujiang (Pearl River), the second largest river in China in terms of water discharge, and flows through one of the largest carbonate provinces in the world. The rare earth element (REE) concentrations of the dissolved load and the suspended particulate matter (SPM) load were measured in the Xijiang River system during the high-flow season. The low dissolved REE concentration in the Xijiang River is attributed to the interaction of high pH and low DOC concentration. The PAAS-normalized REE patterns for the dissolved load show some common features: negative Ce anomaly, progressively heavy REE (HREE) enrichment relative to light REE (LREE). Similar to the world’s major rivers the absolute concentration of the dissolved REE in the Xijiang River are mainly pH controlled. The degree of REE partitioning between the dissolved load and SPM load is also strongly pH dependent. The negative Ce anomaly is progressively developed with increasing pH, being consistent with the oxidation of Ce (III) to Ce (IV) in the alkaline river waters, and the lack of Ce anomalies in several DOC-rich waters is presumably due to both Ce (III) and Ce (IV) being strongly bound by organic matter. The PAAS-normalized REE patterns for the dissolved load and the SPM load in rivers draining the carbonate rock area exhibit middle REE (MREE) enrichment and a distinct maximum at Eu, indicating the preferential dissolution of phosphatic minerals during weathering of host lithologies. Compared to the Xijiang River waters, the MREE enrichment with a maximum at Eu disappeared and light REE were more depleted in the South China Sea (SCS) waters, suggesting that the REE sourced from the Xijiang River must be further fractionated and modified on entering the SCS. The river fluxes of individual dissolved REE introduced by the Xijiang River into the SCS vary from 0.04 to 4.36 × 10 4 mol a −1 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.