Abstract

The isotopic composition of Nd in the water column from several western North Atlantic sites and formational areas for North Atlantic Deep Water shows extensive vertical structure at all locations. In regions where a thermocline is well-developed, large isotopic shifts (2 to 3 ϵ units) are observed across the base of the thermocline. Regions without a thermocline are characterized by much more gradual shifts in isotopic composition with depth. In general, the data reveal an excellent correlation between the Nd isotopic distribution in the western North Atlantic water column and the distribution of water masses identified from temperature and salinity characteristics. NADW, as identified from T-S properties, is also characterized by a well-defined isotopic composition having ϵ_(Nd)(0) = −13.5 ± 0.5. This signature is associated with waters identified as NADW from high latitudes near formational areas in the Labrador Sea down to the equatorial region. The isotopic signature of NADW would appear to be formed by a blend of more negative waters originating in the Labrador Sea (ϵ_(Nd)(0) < −18) and more positive waters originating in the overflows from the Norwegian and Greenland Seas (ϵ_(Nd)(0) ≈ −8 to −10) and is consistent with classical theories on the formation of NADW. The isotopic signature of NADW is propagated southward to the equator where it is gradually being thinned out by mixing from above and below with more radiogenic Nd associated with northward-spreading Antarctic Intermediate and Bottom Waters. The preservation of the isotopic signature of NADW over these large distances indicate that the REE undergo extensive lateral transport. The isotopic composition of Nd is largely conservative over the time scales of mixing within the Atlantic in spite of the intrinsic nonconservative behavior of neodymium. Nd concentration gradients generally show surface waters to be depleted in Nd relative to deep waters, which must require vertical transport processes. However, isotopic differences in the water column preclude the local downward transport of REE from the surface into underlying deep waters as a simple explanation of the concentration gradient. The apparent decoupling of REE in NADW from overlying (local) surface waters and the increasing concentration with depth provide a conflict with simple vertical transport mechanisms that is not yet resolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.