Abstract

Neutron activation determination of La, Ce, Sm, Eu, Tb, Yb, Lu, Ta, Hf, Sc, Co and Th in potassic lavas from the Birunga and Toro-Ankole regions show that the rocks are characterized by high rare earth element (REE) contents (161–754 ppm) and form two groups based upon differing La/Yb ratios. One group is made up of katungite, ugandite and mafurite with La/Yb =146–312, and the other of rocks of the leucitite and phonolitic tephrite series, La/Yb =30–56. The trace element content of the ugandite group is similar to that of kimberlites. The data do not indicate any trends of differentiation or simple relationships between the two groups of rocks, although katungite is unlikely to be parental to rocks of lower La/Yb ratios. It is unlikely that in terms of La/Yb ratios that partial melting of mica-garnet-lherzolite mantle can form katungite because of the very small amounts of partial melting required (0.2%), although the La/Yb ratios of 150–200 (ugandites, mafurites) and 30–60 (leucitites, phonolitic tephrites) can be accounted for by 0.3–1.5% and 1–9% melting respectively, if the REE are then concentrated without further La and Yb fractionation. Partial melting of mantle which has been metasomatized by alkaline earths and REE bearing fluids or mixing of carbonatite and nephelenite are also compatable with the observed geochemistry of the lavas. It is considered that gas transfer processes which selectively enrich the light REE may have obscured REE evidence pertaining to early partial melting and/or differentiation processes and therefore that REE geochemistry is of little use in determining the petrogenetic processes involved in the formation of potassic lavas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call