Abstract
Co3 O4 with high theoretical capacitance is a promising electrode material for high-end energy applications, yet the unexcited bulk electrochemical activity, low conductivity, and poor kinetics of Co3 O4 lead to unsatisfactory charge storage capacity. For boosting its energy storage capability, rare earth (RE)-doped Co3 O4 nanostructures with abundant oxygen vacancies are constructed by simple, economical, and universal chemical precipitation. By changing different types of RE (RE=La, Yb, Y, Ce, Er, Ho, Nd, Eu) as dopants, the RE-doped Co3 O4 nanostructures can be well transformed from large nanosheets to coiled tiny nanosheets and finally to ultrafine nanoparticles, meanwhile, their specific surface area, pore distribution, the ratio of Co2+ /Co3+ , oxygen vacancy content, crystalline phase, microstrain parameter, and the capacitance performance are regularly affected. Notably, Eu-doped Co3 O4 nanoparticles with good cycle stability show a maximum specific capacitance of 1021.3Fg-1 (90.78mAhg-1 ) at 2Ag-1 , higher than 388Fg-1 (34.49mAhg-1 ) of pristine Co3 O4 nanosheets. The assembling asymmetric supercapacitor delivers a high energy density of 48.23Whkg-1 at high power density of 1.2kWkg-1 . These findings denote the significance and great potential of RE-doped Co3 O4 in the development of high-efficiency energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.