Abstract
The structural and electronic properties of rare-earth REEu, Er, and Tm related defect pairs in GaN have been investigated theoretically. Based on LDA+U total-energy calculations, their possible role in the luminescence process is discussed. In all charge states, the lanthanides show a strong preference for the Ga-lattice site, either as isolated substitutional or complexed with intrinsic defects. With respect to the electronic valence, a proper description of correlation effects of the strongly localized 4f electrons is shown to be crucial, especially if the REGa is paired with donors like the Ga interstitial or the N vacancy. The pairs formed by REGa substitutionals and vacancies or interstitials lower the symmetry and are found to locally distort the environment. By this, they are quite effective in relaxing the selection rules for the luminescent intra-4f-shell transitions. While for n-type GaN, the next-nearest-neighbor pair REGaVGa pair is energetically favored, for p-type GaN, the REGaVN pair provides the most stable configuration and introduces shallow levels close to the conduction band, which can act as assistant levels in the luminescence process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.