Abstract

Schizophrenia is a complex and chronic neuropsychiatric disorder, with a heritability of around 60-80%. Large (>100 kb) rare (<1%) copy number variants (CNVs) occur more frequently in schizophrenia patients compared to controls. Currently, there are no studies reporting genome-wide CNVs in clinical high risk for psychosis (CHR-P) individuals. The aim of this study was to investigate the role of rare genome-wide CNVs in 84 CHR-P individuals and 124 presumably healthy controls. There were no significant differences in all rare CNV frequencies and sizes between CHR-P individuals and controls. However, brain-related CNVs and brain-related deletions were significantly more frequent in CHR-P individuals than controls. In CHR-P individuals, significant associations were found between brain-related CNV carriers and attenuated positive symptoms syndrome or cognitive disturbances (OR = 3.07, p = .0286). Brain-related CNV carriers experienced significantly higher negative symptoms (p = .0047), higher depressive symptoms (p = .0175), and higher disturbances of self and surroundings (p = .0029) than noncarriers. Furthermore, enrichment analysis of genes was performed in the regions of rare CNVs using three independent methods, which confirmed significant clustering of predefined genes involved in synaptic/brain-related functional pathways in CHR-P individuals. These results suggest that rare CNVs might affect synaptic/brain-related functional pathways in CHR-P individuals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.