Abstract

Rare Category Exploration (in short as RCE) discovers the remaining data examples of a rare category from a seed. Approaches to this problem often have a high time complexity and are applicable to rare categories with compact and spherical shapes rather than arbitrary shapes. In this paper, we present FREE an effective and efficient RCE solution to explore rare categories of arbitrary shapes on a linear time complexity w.r.t. data set size. FREE firstly decomposes a data set into equal-sized cells, on which it performs wavelet transform and data density analysis to find the coarse shape of a rare category, and refines the coarse shape via an M\(k\)NN based metric. Experimental results on both synthetic and real data sets verify the effectiveness and efficiency of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.