Abstract

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disorders and has a strong heritable component. The aim of this study was to identify new loci that contribute to severe NAFLD by examining rare variants. We performed whole-exome sequencing in individuals with NAFLD and advanced fibrosis or hepatocellular carcinoma (n= 301) and examined the enrichment of likely pathogenic rare variants vs. the general population. This was followed by validation at the gene level. In patients with severe NAFLD, we observed an enrichment of the p.P426L variant (rs143545741 C>T; odds ratio [OR] 5.26, 95% CI 2.1-12.6; p= 0.003) of autophagy-related 7 (ATG7), which we characterized as a loss-of-function, vs. the general population, and an enrichment in rare variants affecting the catalytic domain (OR 13.9; 95% CI 1.9-612; p= 0.002). In the UK Biobank cohort, loss-of-function ATG7 variants increased the risk of cirrhosis and hepatocellular carcinoma (OR 3.30; 95% CI 1.1-7.5 and OR 12.30, 95% CI 2.6-36, respectively; p <0.001 for both). The low-frequency loss-of-function p.V471A variant (rs36117895 T>C) was also associated with severe NAFLD in the clinical cohort (OR 1.7; 95% CI 1.2-2.5; p= 0.003), predisposed to hepatocellular ballooning (p= 0.007) evolving to fibrosis in the Liver biopsy cohort (n= 2,268), and was associated with liver injury in the UK Biobank (aspartate aminotransferase levels, p <0.001), with a larger effect in severely obese individuals in whom it was linked to hepatocellular carcinoma (p= 0.009). ATG7 protein localized to periportal hepatocytes, particularly in the presence of ballooning. In the Liver Transcriptomic cohort (n= 125), ATG7 expression correlated with suppression of the TNFα pathway, which was conversely upregulated in p.V471A carriers. We identified rare and low-frequency ATG7 loss-of-function variants that promote NAFLD progression by impairing autophagy and facilitating ballooning and inflammation. We found that rare mutations in agene called autophagy-related 7 (ATG7) increase the risk of developing severe liver disease in individuals with dysmetabolism. These mutations cause an alteration in protein function and impairment of self-renewal of cellular content, leading to liver damage and inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.