Abstract

The RAPTOR was developed to meet the need for a small, portable, easily operated biosensor for the detection of biological threats in the field. This device has evolved over a number of years to reach its current level of maturity. This paper describes details of the RAPTOR's design, including the recent upgrades to the fluidics and optics subsystems, as well as design improvements that have increased both system reliability and sensitivity. Working with these system upgrades, we also investigated biochemical methods that further improve assay sensitivity. The use of NeutrAvidin/biotin chemistry to improve immobilization of the capture antibody, coupled with use of the fluorophore Alexa Fluor 647 to label the tracer antibody, has resulted in a two- to four-fold signal enhancement. These gains, in combination with redesigned optics and instrumentation, have resulted in approximately a log-order improvement over earlier systems. These improvements are shown for an assortment of analytes of interest, including Staphylococcal enterotoxin type-B, Francisella tularensis, Bacillus anthracis, and Bacillus globigii spores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.