Abstract

Protein-protein interactions are central to most cellular processes and their dysregulation has been related to the development of various diseases. Proximity-based labeling methods are used to identify the endogenous interaction partners of specific proteins of interest (POIs). The POI is fused to promiscuous enzymes, which generate reactive species in vivo and label proteins in close vicinity. APEX-based proximity labeling techniques utilize an engineered ascorbate peroxidase, which in the presence of H2O2 oxidizes biotin-phenol to short lived biotin-phenoxyl radicals that biotinylate nearby proteins. The biotinylated proteins are enriched by biotin affinity capture and identified by mass spectrometry. We devised an advanced method, RAPIDS, in which the peroxidase is physically separated from the POI and only a rapamycin-induced dimerization using the FRB-FKBP12 system brings the two proteins together. RAPIDS improves the specificity of APEX-based interactome analysis by strictly eliminating false positives. In this chapter, we describe this method in detail, with VAPB as a protein of interest and versions of APEX2 with different subcellular localizations. VAPB localizing to different cellular compartments, the endoplasmic reticulum and the inner nuclear membrane, yielded distinct sets of proximity partners as identified by RAPIDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call