Abstract

A moderate reduction in the non-protein thiol content of V79 379A Chinese hamster cells, obtained by pretreatment with buthionine sulphoximine (BSO), diethyl maleate (DEM) or N-ethyl maleimide (NEM), increase both the absolute radiosensitivity of the cells in hypoxia and the radiosensitizing effect of adding oxygen 7 ms after irradiation. Combined pretreatment of cells with BSO and NEM removes most of the non-protein thiol and some of the protein thiol; such treatment further increases the radiosensitivity of hypoxic cells but there is no further effect of adding oxygen 7 ms after irradiation. Addition of 2-mercaptoethanol to cells 7 ms after irradiation gives protection factors that increase with increasing severity of thiol depletion. Substantial radioprotection can still be observed when 2-mercaptoethanol is added 70 ms after irradiation of cells pretreated with BSO and NEM; there is no effect of adding 2-mercaptoethanol to such cells 50s after irradiation. These observations support the repair-fixation model of radiation damage and suggest that, in addition to the established role of non-protein thiol in chemical repair of radiation damage, other endogenous reducing agents such as protein thiol may be important in determining cellular radiosensitivity. A relatively long-lived thiol-modifiable component of radiation damage has been observed within hypoxic thiol-depleted cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call