Abstract
In this research, directed toward using differential absorption lidar (DIAL) for measuring concentrations of pollutant gases, a device for rapidly tuning a transversely excited atmospheric-pressure (TEA) CO 2 laser is presented. It is shown that it is possible to utilize a rotating six-sided scanning mirror and a fixed diffraction grating to rapidly switch wavelength over randomly selected lasing transitions in the 9–11 μm region of the spectrum. The scanning mirror and an optical encoder are driven by a hysteresis synchronous motor at a speed of 1500 rpm. A surface-wire-corona preionization was utilized in a cavity. The laser system is highly automated with microprocessor-controlled laser line selection. Single-branch emission at two wavelengths with time interval ⩽10 ms has been obtained from a single cavity TEA CO 2 laser. An accurate line selection has been demonstrated in over 40 transitions at a pulse repetition frequency of up to 100 Hz. The laser energy at first-order couple output was up to 20 mJ per pulse and the pulse width is about 60 ns in an active volume of 36 cm 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.