Abstract
Postoperative adhesion not only causes severe complications for patients but also increases their economic burden. Injectable bioadhesives with adhesiveness to tissues can cover irregular wounds and stay stable in situ, which is a promising barrier for antiadhesion. However, the potential tissue adhesion caused by bioadhesives' indiscriminate adhesiveness between normal and wounded tissue is still a problem. Herein, by using poly(ethylene glycol) succinimidyl succinate (PEG-SS) and gelatin, a succinyl ester-based bioadhesive (SEgel) was fabricated with self-deactivating properties for postoperative antiadhesion. Because N-hydroxysuccinimide esters (NHS-esters) were used as the adhesive group, the bioadhesives' side in contact with the tissue built covalent anchors quickly to maintain the stability, but the superficial layer facing outward withstood fast hydrolysis and then lost its adhesion within minutes, avoiding the indiscriminate adhesiveness. In addition, because of the specific degradation behavior of succinyl ester, the SEgel with proper in vivo retention was achieved without the worry of causing foreign body reactions and unexpected tissue adhesion. Both the cecum-sidewall adhesion and hepatic adhesion models showed that the SEgel markedly reduced the severity of tissue adhesion. These results, together with the ease of the preparation process and well-proven biocompatibility of raw materials, revealed that the SEgel might be a promising solution for postoperative antiadhesion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.