Abstract

In coal-fired plants, the balance between unburned carbon and NOx emissions stresses the need for rapid and accurate methods for the measurement of unburned carbon. In this paper, molecular CN was adopted to rapidly measure unburned carbon in fly ashes by laser-induced breakdown spectroscopy technique for the first time. The use of molecular CN overcame the interference between the Fe 247.98 and C 247.86 nm lines and the strong diminishing of the C 193.09 nm line intensity in air. Especially, the multivariate regression method combined with the correction of plasma temperature and self-absorption was used to construct calibration model. The performance of the calibration model was evaluated by the quantitative analysis of unkown fly ashes from different types of coal. The results show that the averaged relative error of prediction and the limit of detection are 0.26% and 0.16 wt %, respectively, while the averaged relative standard deviation is less than 5%. The performance of the quantitative analysis of unburned carbon meets the requirement of PRC power industry standard and the most of commercial instruments for online or rapidly analysis of unburned carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.