Abstract

Unsaturated lipids play an essential role in life activities. Identifying and quantifying their carbon-carbon double bond (CC) isomers have become a hot topic in recent years. In lipidomics, the analysis of unsaturated lipids in complex biological samples usually requires high-throughput methods, which puts forward the requirements of rapid response and simple operation for identification. In this paper, we proposed a photoepoxidation strategy, which uses benzoin to open the double bonds of unsaturated lipids to form epoxides under ultraviolet light and aerobic conditions. Photoepoxidation is controlled by light and has a fast response. After 5 min, the derivatization yield can reach 80% with no side reaction products. Besides, the method has the advantages of high quantitation accuracy and a high yield of diagnostic ions. It was successfully applied to rapidly identify the double bond locations of various unsaturated lipids in both positive and negative ion modes, and to rapidly identify and quantitatively analyze the various isomers of unsaturated lipids in mouse tissue extract. So the method has the potential for large-scale analysis of unsaturated lipids in complex biological samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call