Abstract
Godel’s paper on formally undecidable propositions in first order Peano arithmetic (Godel 1931) showed that any recursive axiomatic system containing Peano arithmetic still admits propositions which are not decidable. Godel’s original example of such a proposition was not that illuminating. It was merely a kind of formalization of the well known antinomy of the liar. This raised the problem to look for intuitively meaningful propositions which are independent of Peano arithmetic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.