Abstract
We examined the response of pulmonary rapidly adapting receptors (RAR's) to changes in dynamic lung compliance (Cdyn) in the physiological range. RAR impulse activity was recorded from the cervical vagus nerves in anesthetized open-chest dogs whose lungs were ventilated at constant rate and tidal volume (VT), with a positive end-expiratory pressure (PEEP) of 3-4 cmH2O. After hyperinflation to produce maximal Cdyn, RAR's were silent or fired sparsely and irregularly. Reducing Cdyn in steps by briefly removing PEEP increased firing proportionately, and RAR's began to discharge vigorously in inflation. Activity was restored to control by hyperinflating the lungs. Activity also increased when we increased inflation rate, and hence the rate of change of airway pressure (dP/dt), by reducing inflation time, keeping VT and cycle length constant. RAR's were stimulated more when dP/dt was increased by reducing compliance than when dP/dt was increased by increasing inflation rate. We conclude that RAR's are sensitive to changes in Cdyn and speculate that excitatory input from RAR's may help to maintain VT as the lungs become stiffer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.