Abstract

We report the generation of two types of self-accelerating surface plasmon beams which are solutions of the nonparaxial Helmholtz equation in two dimensions. These beams preserve their shape while propagating along either elliptic (Mathieu beam) or parabolic (Weber beam) trajectories. We show that owing to the nonparaxial nature of the Weber beam, it maintains its shape over a much larger distance along the parabolic trajectory, with respect to the corresponding solution of the paraxial equation-the Airy beam. Dynamic control of the trajectory is realized by translating the position of the illuminating free-space beam. Finally, the ability of these beams to self-heal after blocking obstacles is demonstrated as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.