Abstract

The rapidity dependence of the initial energy density in heavy-ion collisions is calculated from a three-dimensional McLerran-Venugopalan model (3dMVn) introduced by Lam and Mahlon. This model is infrared safe since global color neutrality is enforced. In this non-boost-invariant framework, the nuclei have non-zero thickness in the longitudinal direction. This results in Bjorken-x dependent unintegrated gluon distribution functions which lead to a rapidity-dependent initial energy density after the collision. The initial energy density and its rapidity dependence are important initial conditions for the quark gluon plasma and its hydrodynamic evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call