Abstract

Transcranial magnetic stimulation (TMS) is a non-invasive neurostimulation technique that is increasingly used in the treatment of neuropsychiatric disorders and neuroscience research. Due to the complex structure of the brain and the electrical conductivity variation across subjects, identification of subject-specific brain regions for TMS is important to improve the treatment efficacy and understand the mechanism of treatment response. Numerical computations have been used to estimate the stimulated electric field (E-field) by TMS in brain tissue. But the relative long computation time limits the application of this approach. In this paper, we propose a deep-neural-network based approach to expedite the estimation of whole-brain E-field by using a neural network architecture, named 3D-MSResUnet and multimodal imaging data. The 3D-MSResUnet network integrates the 3D U-net architecture, residual modules and a mechanism to combine multi-scale feature maps. It is trained using a large dataset with finite element method (FEM) based E-field and diffusion magnetic resonance imaging (MRI) based anisotropic volume conductivity or anatomical images. The performance of 3D-MSResUnet is evaluated using several evaluation metrics and different combinations of imaging modalities and coils. The experimental results show that the output E-field of 3D-MSResUnet provides reliable estimation of the E-field estimated by the state-of-the-art FEM method with significant reduction in prediction time to about 0.24 second. Thus, this study demonstrates that neural networks are potentially useful tools to accelerate the prediction of E-field for TMS targeting.

Highlights

  • Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique increasingly used to study human physiology, cognition, brain-behavior relations and the pathophysiology of neurologic and psychiatric disorders [1]

  • We have developed four deep neural networks (DNNs) that use different types of imaging data to predict vector electric field (E-field)

  • We evaluated the angular accuracy of the predicted E-field maps by computing the mean directional error (MDE) between predicted and reference E-field vectors within the reference target region based on the following definition

Read more

Summary

Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique increasingly used to study human physiology, cognition, brain-behavior relations and the pathophysiology of neurologic and psychiatric disorders [1]. Rapid E-field mapping in TMS using deep learning and JC), K01MH117346 (LN), R21MH116352 (LN), R01MH112737(JC). This study was partially completed while XG visited the Psychiatry Neuroimaging Laboratory at Brigham and Women’s Hospital in 2019. No additional external funding was received for this study

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call