Abstract
Herein, raw and alkali-treated hydrochars from biomass waste are prepared as a highly active catalyst for the conversion of waste motor oil into diesel-like fuels. Among all materials, hydrochar obtained at 250 °C and subsequent alkali activation with KOH showed a 600% improvement of the kinetic constant from 0.0088 to 0.0614 m−1. Conversion values at the same conditions were also improved from 66 to 80% regarding thermal and catalytic cracking, respectively. Moreover, the activation energy was also reduced from 293 to 246 kJ mol−1 for thermal and catalytic cracking, respectively. After characterization, the enhanced catalytic activity was correlated to an increased surface area and functionalization due to the alkali activation. Finally, the liquid product characterization demonstrated that catalytic cracking is more effective than thermal cracking for producing hydrocarbons in the diesel range. In particular, hydrochar-based catalysts are suggested to promote the formation of specific hydrocarbons so that the carbon distribution can be tailored by modifying the hydrothermal treatment temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.