Abstract

Monolayer transition metal dichalcogenide (TMD) alloys with tunable band gaps exhibit huge potential in nanoelectronics, optoelectronics, and photonics. The scalable production of uniform atomically thin TMD alloys is a key step for the realization of their device applications but remains a large challenge so far. Here, we report oxygen-assisted chemical vapor deposition (CVD) of uniform atomically thin MoS2(1–x)Se2x semiconductor alloys via a vertical Mo-precursor supply strategy. The growth scheme leads to the formation of highly crystalline MoS2(1–x)Se2x monolayer films within a short growth time of 8 min, which benefits from a stable and homogeneous Mo-precursor feeding environment and the synergic effect of NaBr and oxygen carrier on the growth. The high-resolution spectral characterizations and density functional theory calculations demonstrate that the chemical composition of the as-grown MoS2(1–x)Se2x monolayers can be continuously tuned from x = 0 to 1, leading to the corresponding band gap being gradually changed from 1.81 to 1.55 eV. This work provides an efficient strategy to obtain large-area uniform MoS2(1–x)Se2x monolayer alloys with tunable compositions and optical properties, which is essential for driving their applications in various functional optoelectronic devices, especially for high-performance flexible photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call