Abstract

In muco-obstructive lung diseases (e.g., asthma, chronic obstructive pulmonary disease, cystic fibrosis) and other respiratory conditions (e.g., viral/bacterial infections), mucus biophysical properties are altered by goblet cell hypersecretion, airway dehydration, oxidative stress, and the presence of extracellular DNA. Previous studies showed that sputum viscoelasticity correlated with pulmonary function and that treatments affecting sputum rheology (e.g., mucolytics) can result in remarkable clinical benefits. In general, rheological measurements of non-Newtonian fluids employ elaborate, time-consuming approaches (e.g., parallel/cone-plate rheometers and/or microbead particle tracking) that require extensive training to perform the assay and interpret the data. This study tested the reliability, reproducibility, and sensitivity of Rheomuco, a user-friendly benchtop device that is designed to perform rapid measurements using dynamic oscillation with a shear-strain sweep to provide linear viscoelastic moduli (G', G", G*, and tan δ) and gel point characteristics (γcand σc) for clinical samples within 5 min. Device performance was validated using different concentrations of a mucus simulant, 8 MDa polyethylene oxide (PEO), and against traditional bulk rheology measurements. A clinical isolate harvested from an intubated patient with status asthmaticus (SA) was then assessed in triplicate measurements and the coefficient of variation between measurements is <10%. Ex vivo use of a potent mucus reducing agent, TCEP, on SA mucus resulted in a five-fold decrease in elastic modulus and a change toward a more "liquid-like" behavior overall (e.g., higher tan δ). Together, these results demonstrate that the tested benchtop rheometer can make reliable measures of mucus viscoelasticity in clinical and research settings. In summary, the described protocol could be used to explore the effects of mucoactive drugs (e.g., rhDNase, N-acetyl cysteine) onsite to adapt treatment on a case-by-case basis, or in preclinical studies of novel compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.