Abstract
We tested the hypothesis that vasoregulatory mechanisms exist in humans that can rapidly adjust muscle blood flow to repeated increases and decreases in exercise intensity. Six men and seven women (age, 24.4+/-1.3 yr) performed continuous dynamic forearm handgrip contractions (1- to 2-s contraction-to-relaxation duty cycle) during repeated step increases and decreases in contraction intensity. Three step change oscillation protocols were examined: Slow (7 contractions per contraction intensityx10 steps); Fast (2 contractions per contraction intensityx15 steps); and Very Fast (1 contraction per contraction intensityx15 steps). Forearm blood flow (FBF; Doppler and echo ultrasonography), heart rate (ECG), and mean arterial pressure (arterial tonometry) were examined for the equivalent of a cardiac cycle during each relaxation phase (FBFrelax). Mean arterial pressure and heart rate did not change during repeated step changes (P=0.352 and P=0.190). For both Slow and Fast conditions, relaxation phase FBFrelax adjusted immediately and repeatedly to both increases and decreases in contraction intensity, and the magnitude and time course of FBFrelax changes were virtually identical. For the Very Fast condition, FBFrelax increased with the first contraction and thereafter slowly increased over the course of repeated contraction intensity oscillations. We conclude that vasoregulatory mechanisms exist in human skeletal muscle that are capable of rapidly and repeatedly adjusting muscle blood flow with ongoing step changes in contraction intensity. Importantly, they demonstrate symmetry in response magnitude and time course with increasing versus decreasing contraction intensity but cannot adjust to very fast exercise intensity oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.