Abstract
Rapid damage assessment after an earthquake is crucial for allocating and prioritizing emergency actions. Building damage due to an earthquake depends on the seismic hazard and the building’s strength. While it is now possible to promptly access acceleration data as seismic input through online strong motion networks in urban areas, good models are necessary to evaluate the damage in different zones of the affected area. This study aims to present a rapid method for such an urban-scale building collapse evaluation by conducting a nonlinear dynamic analysis of modeled buildings. Based on the Nagato and Kawase model, this study estimates the yield shear strength of 3-story steel buildings, 3-story reinforced concrete buildings, and 1-story masonry buildings in Sarpol-e-Zahab City after the 2017 Mw7.3 earthquake. The damage ratio is calculated through nonlinear dynamic analyses using estimated records from the main earthquake shock in different city zones. The research found that the seismic yield shear strength of steel and reinforced concrete buildings might be weaker than that of the Iranian seismic code’s standard value. Conversely, masonry-building resistance is stronger than the guidelines assumed. The constructed numerical models can be used for the rapid building damage assessment immediately after a damaging earthquake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.