Abstract

Motivated by the possibility of a string landscape, we re-examine tunneling of a scalar field across single/multiple barriers. Recent investigations have suggested modifications to the usual picture of false vacuum decay that leads to efficient and rapid tunneling in the landscape when certain conditions are met. This can be due to stringy effects (e.g. tunneling via the DBI action), or effects arising from the presence of multiple vacua (e.g. resonance tunneling). In this paper we discuss both DBI tunneling and resonance tunneling. We provide a QFT treatment of resonance tunneling using the Schrödinger functional approach. We also show how DBI tunneling for supercritical barriers can naturally lead to conditions suitable for resonance tunneling. We argue, using basic ideas from percolation theory, that tunneling can be rapid in a landscape where a typical vacuum has multiple decay channels, and discuss various cosmological implications. This rapidity vacuum decay can happen even if there are no resonance/DBI tunneling enhancements, solely due to the presence of a large number of decay channels. Finally, we consider various ways of circumventing a recent no-go theorem for resonance tunneling in quantum field theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.