Abstract

Photogrammetric scanning can be employed for the digitization of underground spaces, for example for remote mapping, visualization, or training purposes. However, such a technique requires capturing many photos, which can be laborious and time-consuming. Previous research has demonstrated that the acquisition time can be reduced by capturing the data with multiple lenses or devices at the same time. Therefore, this paper demonstrates a method for rapid scanning of hard rock tunnels using Structure-from-Motion (SfM) photogrammetry and a 360-degree camera. The test was performed in the Underground Research Laboratory of Aalto University (URLA). The tunnel is located in granitic rocks at a depth of 20 m below the Otaniemi campus in Espoo, Finland. A 10 m long and 3.5 m high tunnel section with exposed rock was selected for this study. Photos were captured using the 360-degree camera from 27 locations and 3D models were reconstructed using SfM photogrammetry. The accuracy, speed, and resolution of the 3D models were measured and compared with models scanned with a digital single-lens reflex (DSLR) camera. The results show that the data capture process with a 360-degree camera is 6x faster compared to a conventional camera. In addition, the orientation of discontinuities was measured remotely from the 3D model and the digitally obtained values matched the manual compass measurements. Even though the quality of the 360-degree camerabased 3D model was visually inferior compared to the DSLR model, the point cloud had sufficient accuracy and resolution for semi-automatic discontinuity measurements. The quality of the models can be improved by combining 360-degree and DSLR photos which result in a point cloud with 3x higher resolution and 2x higher accuracy. The results demonstrated that 360-degree cameras can be used for the rapid digitization of underground tunnels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.