Abstract

The mismatch in the value of the Hubble constant from low- and high-redshift observations may be recast as a discrepancy between the low- and high-redshift determinations of the luminosity of Type Ia supernovae, the latter featuring an absolute magnitude which is $\approx 0.2$~mag lower. Here, we propose that a rapid transition in the value of the relative effective gravitational constant $\mu_G\equiv\frac{G_{\rm eff}}{G_N}$ at $z_t\simeq 0.01$ could explain the lower luminosity (higher magnitude) of local supernovae, thus solving the $H_0$ crisis. A model that features $\mu_G = 1$ for $z \lesssim 0.01$ but $\mu_G \simeq 0.9$ for $z \gtrsim 0.01$ is trivially consistent with local gravitational constraints but would raise the Chandrasekhar mass and so decrease the absolute magnitude of Type Ia supernovae at $z \gtrsim 0.01$ by the required value of $\approx 0.2$~mag. Such a rapid transition of the effective gravitational constant would not only resolve the Hubble tension but it would also help resolve the growth tension as it would reduce the growth of density perturbations without affecting the Planck/$\Lambda$CDM background expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.