Abstract

The time-varying intensities are obtained for astrophysical masers that are radiatively unstable. Numerical integrations of the time-dependent, nonlinear equations of radiative transfer are performed with the usual approximation of a linear maser. At long times after changes in the physical conditions, the intensity of maser radiation reaches an asymptotic behavior and oscillates permanently in these idealized calculations with a period that is related to the length of the maser divided by the speed of light. The intensity varies by more than a factor of 10. These intensities depend upon the same four parameters as we originally found to determine the regime for radiative instabilities based on a stability analysis of the steady state. A detailed comparison is made between the predictions of the stability analysis and the time variations of the intensities. Calculations are performed for interacting pairs as well as isolated, individual masers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call