Abstract

We present comprehensive U-series data ( 238U– 234U– 230Th– 226Ra– 210Pb– 210Po and ( 230Th)/( 232Th)) for an andesite from an oceanic arc. The juvenile Anatahan andesite has U–Th systematics colinear with other historical Mariana volcanic rocks, and is most similar to those of the other volcano in the Mariana arc with a significant proportion of silicic andesite: Uracas. Like Uracas, the parental basalt for the Anatahan andesite was generated by relatively low degrees of flux melting from a source previously enriched in a sediment component from the subducting slab. However, the Anatahan andesite is much more strongly enriched in 226Ra over 230Th than Uracas lavas, and has one of the highest ( 226Ra)/( 232Th) ratios of siliceous andesites globally. The long-lived disequilibria between 238U– 230Th– 226Ra in the Anatahan andesite are inherited from basalt genesis, not created during differentiation or eruption. Thus, the time between genesis of the parental basalt and eruption of andesite at Anatahan is shorter than for Uracas. Moreover, the near-equilibrium ( 210Pb)/( 226Ra) value indicates that the magma body did not persistently lose or gain 222Rn for more than 2 years before eruption. This permits differentiation of the parental basalt to form andesite within this 2-year time period, although a differentiation time period between 100 and a few thousand years also is possible. The relative activities between 210Po and 210Pb suggest erupted scoria degassed Po less than most lavas despite eruption plume heights of ∼10 km, which further suggests an unusually rapid ascent before eruption. These data also show that juvenile material was ejected from the first day of the eruption. Phreatomagmatic ejecta overlying the main Anatahan scoria is strongly enriched in 210Po over 210Pb, indicating that a significant proportion of the Po degassed from rising magmas sublimes in its shallow fumarolic conduit system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.