Abstract
A phosphinate-bearing picolinic acid-based chelating ligand (H6dappa) was synthesized and characterized to assess its potential as a bifunctional chelator (BFC) for inorganic radiopharmaceuticals. Nuclear magnetic resonance (NMR) spectroscopy was employed to investigate the chelator coordination chemistry with a variety of nonradioactive trivalent metal ions (In3+, Lu3+, Y3+, Sc3+, La3+, Bi3+). Density functional theory (DFT) calculations explored the coordination environments of aforementioned metal complexes. The thermodynamic stability of H6dappa with four metal ions (In3+, Lu3+, Y3+, Sc3+) was deeply investigated via potentiometric and spectrophotometric (UV-vis) titrations, employing a combination of acidic in-batch, joint potentiometric/spectrophotometric, and ligand-ligand competition titrations; high stability constants and pM values were calculated for all four metal complexes. Radiolabeling conditions for three clinically relevant radiometal ions were optimized ([111In]In3+, [177Lu]Lu3+, [90Y]Y3+), and the serum stability of [111In][In(dappa)]3- was studied. Through concentration-, time-, temperature-, and pH-dependent labeling experiments, it was determined that H6dappa radiolabels most effectively at near-physiological pH for all radiometal ions. Furthermore, very rapid radiolabeling at ambient temperature was observed, as maximal radiolabeling was achieved in less than 1 min. Molar activities of 29.8 GBq/μmol and 28.2 GBq/μmol were achieved for [111In]In3+ and [177Lu]Lu3+, respectively. For H6dappa, high thermodynamic stability did not correlate with kinetic inertness-lability was observed in serum stability studies, suggesting that its metal complexes might not be suitable as a BFC in radiopharmaceuticals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.