Abstract

Room-temperature-deposited FePt thin films with thickness ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> ) ranged from 5 to 100 nm treated by rapid-thermal annealing (RTA) were studied. With annealing condition of 900 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> C for 60 seconds at heating rate of 80 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> C/sec., a metastable phase of FePt was observed in the films with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> ≥ 40 nm. The phase is chemically ordered with a face-centered-cubic (fcc) structure. The lattice parameter of it is found identical to the planar spacing of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> 1 <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> (100). The metastable structure is dominant in the film with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> = 40 nm and gradually replaced by <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> 1 <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> phase with increasing <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> . The fcc phase is soft magnetic with saturation magnetization similar to that of disordered FePt. Drastic changes were also observed in surface morphology. The results infer the connection between the metastable transformation and internal strain. The formation of the fcc structure is sensitive to processing parameters except <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> . Slower heating rate, lower annealing temperature, and longer annealing time, tend to suppress the formation of it. The interesting findings provide additional knowledge for FePt thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call