Abstract

Formation of nanoparticle SiC (np-SiC) from three-layer Si/C/Si multilayers on Si(100) substrates were investigated using ultra-high-vacuum ion beam sputtering and post annealing by conventional furnace annealing (FA) and rapid thermal annealing (RTA). Fixing the thickness of bottom Si-layer at 50 nm, different thicknessses of the top Si and C layers were designed to study the effect of annealing on the reaction of np-SiC formation, that is, three-layer Si/C/Si structures with thicknesses of 50/200/50 nm by FA and 10/100/50 nm by RTA. There are almost no particle appears at 700degC 1.0 h by FA due to low thermal energy. It was observed that np-SiC appeared at a density order about 108 cm-2 by FA at 900degC for 1.0 h, but many np-SiC can be realized at 750degC for annealing time as short as 1 min at a density order about 1010 cm-2 by RTA. The density is much higher than conventional nanoparticles synthesis using CVD or PVD. The reaction temperature of SiC is also lower than the conventional CVD or FA because of RTA enhanced SiC crystallization behavior at high heating rate. The annealing method influences the particle formation. The particle size, distribution and density are concerned with the top and middle layer thickness. Thermal energy is the diving force for the crystalline SiC formation through interdiffusion between C and Si.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.