Abstract

Quantum mechanical tunneling (QMT) can play an important role in light element-related chemical reactions; however, its influence on racemization is not fully understood. Herein, we demonstrate that the role of QMT is decisive for rapid racemization of the well-known thalidomide molecule in aqueous environments, increasing the reaction rate constants of the most likely racemization pathways by 87-149 times at approximately body temperature and achieving good agreement between theoretical calculations and experimental observations. In addition, the kinetic isotope effect values fit well with those of previous experiments. These results are attributed to enhanced tunneling probability due to the alteration of potential barriers for proton transfer reactions via water bridges. This work highlights the significance of the QMT effect in racemization and its potential impact on drug safety, providing a fundamental perspective for understanding chirality-related issues in biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.