Abstract

Core-shell nanocomposites are promising materials in the degradation of harmful chemicals released from industries/factories. In this work, ZnO@SiO2@Ag triple–layered core-shell nanocomposites synthesized by a facile chemical precipitation route at 400 °C using as-prepared ZnO@SiO2 samples as a precursor were investigated for photocatalytic application. The synthesized ZnO@SiO2 and ZnO@SiO2@Ag samples were characterized using XRD, SEM, TEM, XPS, and UV-Vis spectrometer. The XRD studies showed that both nanocomposites possess the hexagonal wurtzite crystalline phase of the core ZnO. Moreover, the average crystallite sizes of ZnO@SiO2@Ag composites determined from the XRD spectra were found to be 27.98 nm and 30.56 nm for reaction times of 4 h and 12 h, respectively. The SEM and TEM analyses indicate that the morphologies of the samples were rod-shaped. The UV-Vis spectroscopy showed that the ZnO@SiO2@Ag nanoparticles exhibited maximum absorbance peak at 363 nm with a calculated band gap energy of 3.13 eV. In addition, the photocatalytic activity and stability were analyzed by a photoreduction method using the photodegradation property of organic methylene blue under UV-Vis light irradiation. Compared with the “bare” ZnO@SiO2 samples, the stability and photocatalytic performance of the Ag coated ZnO@SiO2@Ag nanocomposites were highly enhanced, and the reasons for the enhancement are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.