Abstract

Novel flower-like birnessite type manganese oxide hierarchical architectures were hydrothermally synthesized from KMnO4 solution using sodium fluorite as a reductant in sulfuric acid medium at low temperature. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and X-ray photoelectron (XPS) spectroscopes confirm that the composition of the as-fabricated product. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), selected area electron diffraction (SA-ED), high resolution transmission electron microscopy (HR-TEM) and N2 adsorption–desorption isotherm reveal that the as-synthesized sample exhibits a microsized flower-like crystal with dense nanoleaves standing on their surfaces, polycrystalline, monoclinic phase structure and high BET surface area. On the basis of time-dependent experimental results, a possible mechanism for the formation of flowerlike structures is speculated. Their capability of catalytic degradation of formaldehyde solution with oxygen air bubbles were studied by using an acetylacetone calorimetric spectra, total organic carbon (TOC) method and turnover number (TON). In addition, the birnessite nanoflower is stable during the reaction and can be used repeatedly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.