Abstract

The fabrication of superhydrophobic coatings using a candle flame or rapeseed oil has become very attractive as a novel approach for synthesis of water repellent surfaces. Here, we report an improved, simplified and time-efficient method for the preparation of robust superhydrophobic carbon soot that does not require any additional stabilizers or chemical treatment. The soot's inherent stabilization is achieved using a specially-designed cone-shaped aluminum chimney, mounted over an ignited paper-based wick immersed in a rapeseed oil. Such configuration decreases the level of oxygen during the process of combustion; altering the ratio of chemical bonds in the soot. As a result, the fractal-like network of the carbon nanoparticles is converted into dense and fused carbon chains, rigidly coupled to the substrate surface. The modified carbon coating shows thermal sustainability and retains superhydrophobicity up to ∼300°C. Furthermore, it demonstrates a low contact angle hysteresis of 0.7–1.2° accompanied by enhanced surface adhesion and mechanical durability under random water flows. In addition, the soot's deposition rate of ∼1.5μm/s reduces the exposure time of the substrate to heat and consequently minimizes the thermal effects, allowing the creation of superhydrophobic coatings on materials with low thermal stability (e.g. wood or polyethylene).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call