Abstract

Graphdiyne (GDY), a two-dimensional (2D) carbon material with diacetylenic linkages (-C≡C-C≡C-) structures, has attracted enormous attention in various fields. However, the controlled synthesis of GDY films is still challenging because of the low alkyne coupling efficiency and out-of-plane growth. Here, we employed a highly efficient Cu(II)-N,N,N',N'-tetramethylethylenediamine (Cu(II)-TMEDA) catalyst and constructed a superspreading liquid/liquid interface on a hydrogel for rapid and controllable synthesis of GDY thin films. GDY films with controllable thickness from 4 to 50 nm and large-scale uniform morphology can be prepared within 2 h at room temperature. The mechanism of growth was revealed to be a nucleation and in-plane extension process. Meanwhile, the as-grown GDY films showed excellent photothermal conversion efficiency, which induces the release of Cu(II) ions from the hydrogel and exhibits high efficiency in synergistic antibacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call