Abstract

AbstractGlass‐ceramics are possible host matrix for high level waste immobilization. The Gd2Zr2O7 glass‐ceramic matrix was successfully synthesized using spark plasma sintering (SPS) method in 5 minutes. The phase transition with sintering temperature was studied using X‐ray diffraction, Raman and transmission electron microscopy. It revealed that samples kept a main defected fluorite phase as being sintered below 1800°C. Glass phase increased rapidly beyond 1850°C. The amorphous structure became the main body at 1900°C, with nanoscale crystal scattered in the bulk. With the increase of glass phase, the grain boundary became almost indistinguishable. The relationship between the final phase of Gd2Zr2O7 with its synthetic temperature range and corresponding technology was reviewed. Gd2Zr2O7 glass‐ceramics could be acquired by extending the sintering temperature beyond 1850°C using SPS method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.