Abstract

Current gene synthesis methods allow the generation of long segments of dsDNA. We show that these techniques can be used to create synthetic regulatory elements and describe a method for the creation of completely defined, synthetic variants of the PHO5 promoter from the budding yeast Saccharomyces cerevisae. Overall, 128 promoters were assembled by high-temperature ligation, cloned into plasmids by isothermal assembly, maintained in E. coli, and consequently transformed into yeast by homologous recombination. Synthesis errors occurred at frequencies comparable to or lower than those achieved with current gene synthesis methods. The promoter synthesis method reported here is robust, fast, and readily accessible. Synthetically engineered promoter libraries will be useful tools for dissecting the intricacies of promoter input-output functions and may serve as tunable components for synthetic genetic networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.