Abstract

The silica aerogels were synthesized by sol–gel method via ambient pressure drying. Tetraethyl orthosilicate (TEOS) was used as a main silica source, methyltriethoxysilane (MTES) as a co-precursor silica source and (3-Glycidoxypropyl)trimethoxysilane (GPTMS) as a silane coupling agent. The silica aerogels obtained were further undergoing cross-linking epoxy from GPTMS with amine from diethylenetriamine (DETA) which played a dual role of base catalyst and reagent. The cumulative volumes for open pores of the cross-linked aerogels were evaluated to be 1.4cm3/g. The Young's modulus and maximum compression strength were 25.4MPa and 6.17MPa, respectively. The addition of MTES accelerated the solvent exchange of alcohol within the pores with n-hexane and reduced the shrinkage of aerogels network during the ambient pressure drying. The formation of organic network enhanced the strength of the cross-linked aerogels to prevent the crack generation and the subsequent failure of the monolith during the ambient drying, therefore, protected the nanoporous structure of aerogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.