Abstract

Quasicrystalline (QC) phases are often stable only within narrow composition domains. For this reason, the synthesis of larger amounts of single-phase quasicrystalline powders is difficult. Powder metallurgical approaches, based on mechanical milling followed by conventional heating, have been explored in the recent past. The manufacturing process for single-phase quasicrystals – either in the form of powders or as bulk parts – can be accelerated by orders of magnitude using rapid heating methods that involve pulsed electric currents and/or high-frequency electromagnetic fields. Prior knowledge of the phase transformation sequence and transformation kinetics, as revealed by in situ time-resolved synchrotron radiation experiments, is crucial in obtaining single-phase quasicrystals. We report on the simultaneous synthesis and densification of bulk single-phase Al–Cu–Fe QCs by spark plasma sintering (SPS) within minutes and on the ultrafast synthesis of single-phase Al–Cu–Fe quasicrystalline powders by microwave heating within seconds. The effect of electric current application in the rapid processing of pre-alloyed powders is discussed in relation to the faster diffusion and enhanced phase transformation kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call