Abstract

Sharp resonance spectra of high-Q micromechanical resonators are advantageous in their applications, such as highly precise sensors and narrow band-pass filters. However, the high-Q characteristics hinder quick repetitive operations of mechanical resonators because of their long ring-down time due to their slow energy relaxation. Here, we demonstrate a scheme to solve this trade-off problem in paired GaAs micromechanical resonators by using parametrically induced intermode coupling. The strong intermode coupling induced by the piezoelectric modulation of tension allows on-demand energy transfer between closely spaced mechanical modes of the resonator via coherent control of the coupling. This enables rapid switching of the vibration amplitude within the ring-down time, leading to quick repetitive operations in high-Q mechanical resonators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.