Abstract

Arterial injuries, particularly in emergency situations or challenging environments, demand convenient, safe, and efficient repair strategies. Herein, we developed and evaluated a portable, suture-free, ultra-thin arterial repair membrane, referred to as the tissue-adhesive biphasic hydrogel membrane (TBHM). The TBHM was developed using electrospinning technology and a biphasic photosensitive hydrogel, composed of nitrobenzene-modified hyaluronic acid (HA-NB) and methacrylated polyvinyl alcohol (PVA-MA), with lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the photoinitiator. The TBHM was characterized by rapid bonding, high adaptability, and the ability to withstand a maximum burst pressure of 441.9 ± 25 mmHg. This membrane is capable of rapidly crosslinking and sealing a wound within 23 s. In vitro cell culture assays validated the biocompatibility and safety of the TBHM. Using a rabbit carotid artery rupture model, the TBHM allowed for immediate suture-free repair. Postoperative CT and Doppler ultrasound examinations confirmed restoration of normal anatomical structure and function. Histopathological analysis and molecular biology tests suggested that TBHM has potential anti-inflammatory and tissue regeneration-promoting properties. This study thus presented the TBHM as a promising novel strategy for the rapid, suture-free repair of arterial injuries, which may revolutionize emergency trauma and hemorrhage control scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.