Abstract

Partial oxidation of ammonium to nitrite is a pre- and crucial step to achieve shortcut biological nitrogen removal from ammonium-rich wastewater. In the present study, a nitritation granular reactor using activated sludge as inoculum was started up in a sequencing batch reactor (SBR) at a fixed influent C/N ratio of 2:1. Variations in the reactor performance, functional bacteria activities, sludge morphology and bacterial community structure were investigated. Results showed the formation of compact granules was achieved in 55 days, and a stable nitrite accumulation rate of 0.68 kg N·m−3·d−1 was maintained in the following period. With a rapid growth of granular size, the total nitrogen removal by simultaneous nitritation/denitritation was progressively increased to 50%. In sludge granulation, the significant enrichment of r-strategist ammonium oxidizing bacteria (Nitrosomonas) was identified. Additionally, both high free ammonia concentration and extra nitrite competition by heterotrophic denitrifiers were critical to suppress nitrite oxidizing bacteria effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call