Abstract

In this paper, we present rapid boundary stabilization of a Timoshenko beam with anti-damping and anti-stiffness at the uncontrolled boundary, by using infinite-dimensional backstepping. We introduce a Riemann transformation to map the Timoshenko beam states into a set of coordinates that verify a 1-D hyperbolic PIDE-ODE system. Then backstepping is applied to obtain a control law guaranteeing closed-loop stability of the origin in the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$L^{2}$</tex-math></inline-formula> sense. Arbitrarily rapid stabilization can be achieved by adjusting control parameters, and has not been achieved in previous results. Finally, a numerical simulation shows the effectiveness of the proposed controller. This result extends a previous work which considered a slender Timoshenko beam with Kelvin-Voigt damping, by allowing destabilizing boundary conditions at the uncontrolled boundary and attaining an arbitrarily rapid convergence rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.