Abstract

Benzene-bridged periodic mesoporous organosilicas (PMOs) with the MCM-41 were synthesized by a rapid sonochemical process via co-condensation of tetraethoxysilane (TEOS) and 1,4-bis(triethoxysilyl) benzene (BTEB) under basic conditions within a few minutes using cetyltrimethylammoniumbromide (CTMABr) as a structure-directing agent. The molar ratio of the silicon precursors and the synthesis time were varied in order to investigate their influence on the structural ordering of the materials. The characteristics of the materials were evaluated by X-ray diffraction (XRD), N2-sorption, transmission electron microscopy (TEM) and solid-state NMR spectroscopy. The resultant materials exhibited well-ordered hexagonal mesostructures with surface areas in the range of 602–1237m2/g, pore volumes of 0.37–0.68cm3/g, and pore diameters in the range of 2.5–3.5nm. Two dimensional 29Si{1H} heteronuclear correlation (HETCOR) NMR spectra confirmed the formation of a single mesophase with various Q (from TEOS) and T (from BTEB) silicon species located randomly within the pore walls due to the co-condensation of BTEB and TEOS, which excluded the possibility of formation of island or two separate phases within such a short synthesis time. The prime advantage of the present synthesis route is that it can effectively reduce the total synthesis time from days to a few minutes, much shorter than the conventional benzene-bridged PMOs synthesis methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call