Abstract

Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching. It is found that the alloy generally has a microstructure consisting of a (Co,Cr)-rich phase embedded in a Cu-rich matrix, and the morphology and size of the (Co,Cr)-rich phase vary drastically with cooling rate. During the electromagnetic levitation solidification processing the cooling rate is lower, resulting in an obvious coalescence tendency of the (Co,Cr)-rich spheroids. The (Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates. In the splat quenched samples the (Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed. This is probably due to the higher cooling rate, undercooling and interface tension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call