Abstract

The upsurge of smart devices has enabled the realization of safe, efficient smart cities that improve the quality of life of their citizens. A prevalent class of smart city services that are attracting increasing attention are Smart Emergency Response and Management (SERM) systems, where sensing paradigms such as crowd sensing and IoT-centric sensing are employed to facilitate the detection of, and response to a crisis situation. In this paper, we study the detection of an abnormal change in a monitored variable through crowd sensed and heterogeneous data, where the change is suggestive of an emergency situation. We formulate our problem as a sequential change-point detection problem, where the underlying distribution of the variable changes at an unknown time. We aim to detect the change-point with minimal delay, subject to a false alarm constraint. We utilize Shiryaev’s test to construct two variants of the solution depending on the structure of the received data contributions and mobility of participating sensing elements. We conduct simulations experiments to show the performance of these variants in terms of the delay-false alarm trade-off in different scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.